
GCE A LEVEL MARKING SCHEME

SUMMER 2023

**A LEVEL
FURTHER MATHEMATICS
UNIT 5 FURTHER STATISTICS B
1305U50-1**

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL FURTHER MATHEMATICS
UNIT 5 FURTHER STATISTICS B
SUMMER 2023 MARK SCHEME

Qu.	Solution	Mark	Notes
1 (a)	$(\sum x = 2759 \quad \sum x^2 = 846081)$ $\hat{\mu} = 306.555 \dots$ $\hat{\sigma}^2 = \frac{1}{8}(846081 - 9 \times 306.555 \dots^2) = \frac{331}{9} = 36.777 \dots$	B1 M1A1	At least 1dp M1 for appropriate use of calculator or Use of $\hat{\sigma}^2 = \frac{1}{n-1}(\sum x^2 - n\bar{x}^2)$ Allow 33.7122 from rounding $\hat{\mu}$ to 306.56 M1A0 for 40.6096... from $\bar{x} = 306.55$ M1A0 for 6.12 from $\bar{x} = 306.6$ FT their $\hat{\mu}$ for M1 only, provided $\hat{\sigma}^2 > 0$
(b)	$H_0: \mu = 305 \quad H_1: \mu > 305$ DF = 8 CV = 1.860 $t = \frac{306.5555\dots - 305}{\sqrt{\frac{36.7777\dots}{9}}}$ $t = 0.7695 \dots$ Since $0.7695 < 1.860$ there is insufficient evidence to reject H_0 . There is insufficient evidence to say that this is an old kettle.	B1 B1 B1 M1 A1 m1 A1 E1	si FT their DF FT their $\hat{\mu}$ and $\hat{\sigma}^2$ cao Accept 0.77 from correct working Allow 0.806 from $\hat{\mu} = 306.56$ and $\hat{\sigma}^2 = 33.71(22)$ FT their t Dep on use of t -distribution. cso
(c)	Valid factor. e.g. the initial water temperature. e.g. the initial kettle temperature. e.g. the ambient temperature. e.g. the volume of water. e.g. the voltage going to the kettle. e.g. the mineral content of the water		Total [11]

Qu.	Solution	Mark	Notes
2 (a)	$E(T_1) = \frac{3E(\bar{X}) + 7E(\bar{Y})}{10}$ $E(T_1) = \frac{3\mu + 7\mu}{10}$ <p>$E(T_1) = \mu$, therefore T_1 is an unbiased estimator for μ.</p>	M1	
(b)	$E(T_2) = \frac{E(\bar{X}) + a^2 E(\bar{Y})}{1 + a}$ <p>To be an unbiased estimator for μ</p> $\frac{\mu + a^2 \mu}{1 + a} = \mu$ $1 + a^2 = 1 + a$ <p>$a = 0$ or $a = 1$. a is positive $\therefore a = 1$ (so $T_2 = \frac{\bar{X} + \bar{Y}}{2}$)</p>	A1	Convincing
(c)	$\text{Var}(T_1) = \frac{3^2 \times \text{Var}(\bar{X}) + 7^2 \times \text{Var}(\bar{Y})}{10^2}$ $\text{Var}(T_1) = \frac{9 \times \frac{\sigma^2}{20} + 49 \times \frac{k\sigma^2}{25}}{100}$ $\text{Var}(T_1) = \frac{45\sigma^2 + 196k\sigma^2}{10000} = \frac{\sigma^2}{10000} (45 + 196k)$ $\text{Var}(T_2) = \frac{1}{4}(\text{Var}(\bar{X}) + \text{Var}(\bar{Y}))$ $\text{Var}(T_2) = \frac{1}{4} \left(\frac{\sigma^2}{20} + \frac{k\sigma^2}{25} \right)$ $\text{Var}(T_2) = \frac{\sigma^2}{400} (5 + 4k)$	M1 M1 A1 M1 M1 A1	Forming an equation in μ . si oe Must reject $a = 0$. If M0, then SC1 for verification only Use of $\text{Var}(cW) = c^2 \text{Var}(W)$ Use of $\text{Var}(\bar{W}) = \text{Var}(W)/n$ oe, cao $\text{Var}(T_1) = \frac{9\sigma^2}{2000} + \frac{49k\sigma^2}{2500}$ oe $\text{Var}(T_2) = \frac{\sigma^2}{80} + \frac{k\sigma^2}{100}$ If left in terms of a $\text{Var}(T_2) = \frac{\sigma^2(5 + 4a^4k)}{100(1 + a)^2}$

Qu.	Solution	Mark	Notes
2 (d)	$\frac{\sigma^2}{400}(5 + 4k) = \frac{45\sigma^2 + 196k\sigma^2}{10000}$ $\frac{10000}{400}(5 + 4k) = 45 + 196k \quad \text{or} \quad 25(5 + 4k) = 45 + 196k$ $125 + 100k = 45 + 196k$ $k = \frac{5}{6}$	M1 m1	M1 for setting their $\text{Var}(T_1) = \text{Var}(T_2)$ Forming an equation in k
	*ag	A1	Convincing.
(e)	$V = \text{Var}(T_3) = (1 - \lambda)^2 \times \text{Var}(\bar{X}) + \lambda^2 \times \text{Var}(\bar{Y})$ $V = \text{Var}(T_3) = (1 - \lambda)^2 \times \frac{\sigma^2}{20} + \lambda^2 \times \frac{k\sigma^2}{25}$ $\frac{dV}{d\lambda} = \frac{-2(1 - \lambda)\sigma^2}{20} + \frac{2\lambda k\sigma^2}{25}$ <p>Smallest variance is when $\frac{dV}{d\lambda} = 0$</p> $\frac{2\lambda k\sigma^2}{25} = \frac{2(1 - \lambda)\sigma^2}{20}$ $\lambda k = \frac{5}{4}(1 - \lambda)$ $\lambda k + \frac{5\lambda}{4} = \frac{5}{4}$ $\lambda \left(\frac{4k}{4} + \frac{5}{4} \right) = \frac{5}{4}$ $\lambda = \frac{5}{4k + 5}$ $\frac{d^2V}{d\lambda^2} = \frac{\sigma^2}{10} + \frac{2k\sigma^2}{25} > 0$ <p>Therefore, it is a minimum.</p>	B1 M1 M1 m1 A1 E1 Total [19]	cao M1 for expression for $\frac{dV}{d\lambda}$ At least 1 term correct M1 for setting $\frac{dV}{d\lambda} = 0$ and attempt to solve. m1 for λ on one side of equation. Provided M1M1 awarded cao E1 for verifying minimum, oe method

Qu.	Solution	Mark	Notes
3 (a)	$\bar{x} \left(= \frac{4014}{90} \right) = 44.6$ $\text{Standard error} = \sqrt{\frac{4.7^2}{90}}$ $\text{Use of } \bar{x} \pm z \times \text{SE}$ $= 44.6 \pm 2.5758 \times \sqrt{\frac{4.7^2}{90}}$ $[43.3, 45.9]$	B1 B1 M1 A1 A1	si si FT their \bar{x} and SE provided $\neq 4.7$ for M1A1 Must show working. From tables 2.576 cao
(b)	Because the confidence level has decreased, the width is narrower.	E1	Condone width will be smaller.
(c)	$\bar{x} = \frac{49.9 + 52.6}{2} = 51$ $\text{Use of } \bar{x} \pm 1.96 \times \frac{\sigma}{\sqrt{n}}$ $\text{Upper limit of 95\% CI is given by}$ $51 + 1.96 \times \frac{\sigma}{\sqrt{100}} = 52.6 \quad \text{oe}$ <p>OR</p> $2 \times \frac{\sigma}{\sqrt{100}} \times 1.96 = 3.2$ $\sigma = 8.163 \dots$	M1 A1 (A1) A1	
(d)	<p>Valid comment. Eg. The confidence intervals suggest that athletes who compete in the 400m have lower RHR on average.</p> <p>Valid reason. Eg. The confidence interval for the athletes who compete in the 400m lies entirely below the confidence interval for the athletes who compete in the discus.</p> <p>Valid comment and reason. e.g. The RHR of athletes who compete in the discus event are possibly more varied, as the width of the CI is wider and the confidence level is lower.</p>	E1 E1 (E2)	FT their CI from (a) Condone 'Non-overlapping confidence intervals'. Total [11]

Qu.	Solution	Mark	Notes
5 (a)	$\bar{X} \sim N\left(75, \frac{10^2}{5}\right)$ $P(\bar{X} < 70) = 0.13177 \dots$ ALTERNATIVE METHOD $T = X_1 + X_2 + \dots + X_5$ $T \sim N(375, 500)$ $P(T < 350) = 0.13177 \dots$	B1 M1A1 (B1) (M1A1)	si oe
(b)	$\bar{X} \sim N\left(75, \frac{10^2}{n}\right)$ $P(\bar{X} > 80) \approx 0.007$ $P\left(Z > \frac{80 - 75}{\sqrt{\frac{100}{n}}}\right) \approx 0.007$ $\frac{80 - 75}{\sqrt{\frac{100}{n}}} \approx 2.4572$	B1 M1 M1B1	si Standardising accept $(75 - 80)$ for numerator M1 for correct standardisation set equal to $2 \leq k \leq 3$ B1 for 2.457 or better
	$n = 24$	A1	cao
(c)	Let $T = X_1 + X_2 + X_3 + Y_1 + Y_2 + Y_3 + Y_4$ $E(T) = 497$ $\text{Var}(T) = 3 \times 100 + 4 \times 36$ $\text{Var}(T) = 444$ $P(T > 500) = 0.44339 \dots$	B1 M1 A1 B1	From tables 0.44433
(d)	Valid assumption. e.g. the workers do not carry any extra baggage. e.g. mass of workers' clothes may be ignored.	E1 Total [13]	

